CASM
1.1.0
A Clusters Approach to Statistical Mechanics
|
Relates to symmetry groups.
Classes | |
class | CASM::SymGroup |
SymGroup is a collection of symmetry operations that satisfy the group property The symmetry operations are stored as their coordinate representation, as described by the SymOp class i.e., if SymOps 'A' and 'B' are in SymGroup, C=A*B is also in SymGroup if 'A' is in SymGroup, then A.inverse() is in SymGroup SymGroup always contains an identity operation. More... | |
class | CASM::MasterSymGroup |
class | CASM::SymGroupRep |
SymGroupRep is an alternative representation of a SymGroup for something other than real space. There is a one-to-one correspondence of SymOps in some SymGroup with the SymOpRepresentations in SymGroupRep SymGroupRep does not know or care about the specifics of what the SymOpRepresentations describe or how they are implemented. More... | |
class | CASM::SymGroupRepID |
Type-safe ID object for communicating and accessing Symmetry representation info. More... | |
Functions | |
std::map< std::string, std::string > | CASM::point_group_info (SymGroup const &group) |
return dictionary of point group info: result["centricity"] : "Centric" or "Acentric" result["crystal_system"] : cubic, hexagonal, etc result["international_name"] : Hermann-Mauguin point group name result["name"] : Schoenflies name result["latex_name"] : Schoenflies name (in LaTeX markup) result["space_group_range"] : range of possible space group numbers If group is magnetic, then point group name has form "G1(G2)" where G1 is point group name of entire group (with time-reversal turned of) and G2 is the subgroup of operations that do not effect time reversal. If G1 is identical to G2 (every operation has a time-reversed partner), then the name is G1' does not work for icosahedral groups More... | |
SymGroup | CASM::molecular_point_group (std::map< int, std::vector< Eigen::Vector3d >> coord_map) |
MasterSymGroup | CASM::make_master_sym_group (SymGroup const &_group, Lattice const &_lattice) |
bool | CASM::compare_periodic (const SymOp &a, const SymOp &b, const Lattice &lat, PERIODICITY_TYPE periodicity, double _tol) |
SymOp | CASM::within_cell (const SymOp &a, const Lattice &lat, PERIODICITY_TYPE periodicity) |
template<typename IterType > | |
CASM::SymGroup::SymGroup (IterType begin, IterType end, PERIODICITY_TYPE init_type=PERIODIC) | |
template<typename IterType > | |
std::vector< std::vector< Index > > | CASM::SymGroup::left_cosets (IterType const &begin, IterType const &end) const |
bool CASM::compare_periodic | ( | const SymOp & | a, |
const SymOp & | b, | ||
const Lattice & | lat, | ||
PERIODICITY_TYPE | periodicity, | ||
double | _tol | ||
) |
Definition at line 2160 of file SymGroup.cc.
std::vector< std::vector< Index > > CASM::SymGroup::left_cosets | ( | IterType const & | begin, |
IterType const & | end | ||
) | const |
Definition at line 411 of file SymGroup.hh.
MasterSymGroup CASM::make_master_sym_group | ( | SymGroup const & | _group, |
Lattice const & | _lattice | ||
) |
Definition at line 2148 of file SymGroup.cc.
SymGroup CASM::molecular_point_group | ( | std::map< int, std::vector< Eigen::Vector3d >> | coord_map | ) |
std::map< std::string, std::string > CASM::point_group_info | ( | SymGroup const & | group | ) |
return dictionary of point group info: result["centricity"] : "Centric" or "Acentric" result["crystal_system"] : cubic, hexagonal, etc result["international_name"] : Hermann-Mauguin point group name result["name"] : Schoenflies name result["latex_name"] : Schoenflies name (in LaTeX markup) result["space_group_range"] : range of possible space group numbers If group is magnetic, then point group name has form "G1(G2)" where G1 is point group name of entire group (with time-reversal turned of) and G2 is the subgroup of operations that do not effect time reversal. If G1 is identical to G2 (every operation has a time-reversed partner), then the name is G1' does not work for icosahedral groups
Definition at line 882 of file SymGroup.cc.
CASM::SymGroup::SymGroup | ( | IterType | begin, |
IterType | end, | ||
PERIODICITY_TYPE | init_type = PERIODIC |
||
) |
Definition at line 398 of file SymGroup.hh.
SymOp CASM::within_cell | ( | const SymOp & | a, |
const Lattice & | lat, | ||
PERIODICITY_TYPE | periodicity | ||
) |
Definition at line 2178 of file SymGroup.cc.