CASM  1.1.0
A Clusters Approach to Statistical Mechanics
SymGroup

Detailed Description

Relates to symmetry groups.

Classes

class  CASM::SymGroup
 SymGroup is a collection of symmetry operations that satisfy the group property The symmetry operations are stored as their coordinate representation, as described by the SymOp class i.e., if SymOps 'A' and 'B' are in SymGroup, C=A*B is also in SymGroup if 'A' is in SymGroup, then A.inverse() is in SymGroup SymGroup always contains an identity operation. More...
 
class  CASM::MasterSymGroup
 
class  CASM::SymGroupRep
 SymGroupRep is an alternative representation of a SymGroup for something other than real space. There is a one-to-one correspondence of SymOps in some SymGroup with the SymOpRepresentations in SymGroupRep SymGroupRep does not know or care about the specifics of what the SymOpRepresentations describe or how they are implemented. More...
 
class  CASM::SymGroupRepID
 Type-safe ID object for communicating and accessing Symmetry representation info. More...
 

Functions

std::map< std::string, std::string > CASM::point_group_info (SymGroup const &group)
 return dictionary of point group info: result["centricity"] : "Centric" or "Acentric" result["crystal_system"] : cubic, hexagonal, etc result["international_name"] : Hermann-Mauguin point group name result["name"] : Schoenflies name result["latex_name"] : Schoenflies name (in LaTeX markup) result["space_group_range"] : range of possible space group numbers If group is magnetic, then point group name has form "G1(G2)" where G1 is point group name of entire group (with time-reversal turned of) and G2 is the subgroup of operations that do not effect time reversal. If G1 is identical to G2 (every operation has a time-reversed partner), then the name is G1' does not work for icosahedral groups More...
 
SymGroup CASM::molecular_point_group (std::map< int, std::vector< Eigen::Vector3d >> coord_map)
 
MasterSymGroup CASM::make_master_sym_group (SymGroup const &_group, Lattice const &_lattice)
 
bool CASM::compare_periodic (const SymOp &a, const SymOp &b, const Lattice &lat, PERIODICITY_TYPE periodicity, double _tol)
 
SymOp CASM::within_cell (const SymOp &a, const Lattice &lat, PERIODICITY_TYPE periodicity)
 
template<typename IterType >
 CASM::SymGroup::SymGroup (IterType begin, IterType end, PERIODICITY_TYPE init_type=PERIODIC)
 
template<typename IterType >
std::vector< std::vector< Index > > CASM::SymGroup::left_cosets (IterType const &begin, IterType const &end) const
 

Function Documentation

◆ compare_periodic()

bool CASM::compare_periodic ( const SymOp a,
const SymOp b,
const Lattice lat,
PERIODICITY_TYPE  periodicity,
double  _tol 
)

Definition at line 2160 of file SymGroup.cc.

◆ left_cosets()

template<typename IterType >
std::vector< std::vector< Index > > CASM::SymGroup::left_cosets ( IterType const &  begin,
IterType const &  end 
) const

Definition at line 411 of file SymGroup.hh.

◆ make_master_sym_group()

MasterSymGroup CASM::make_master_sym_group ( SymGroup const &  _group,
Lattice const &  _lattice 
)

Definition at line 2148 of file SymGroup.cc.

◆ molecular_point_group()

SymGroup CASM::molecular_point_group ( std::map< int, std::vector< Eigen::Vector3d >>  coord_map)

◆ point_group_info()

std::map< std::string, std::string > CASM::point_group_info ( SymGroup const &  group)

return dictionary of point group info: result["centricity"] : "Centric" or "Acentric" result["crystal_system"] : cubic, hexagonal, etc result["international_name"] : Hermann-Mauguin point group name result["name"] : Schoenflies name result["latex_name"] : Schoenflies name (in LaTeX markup) result["space_group_range"] : range of possible space group numbers If group is magnetic, then point group name has form "G1(G2)" where G1 is point group name of entire group (with time-reversal turned of) and G2 is the subgroup of operations that do not effect time reversal. If G1 is identical to G2 (every operation has a time-reversed partner), then the name is G1' does not work for icosahedral groups

Definition at line 882 of file SymGroup.cc.

◆ SymGroup()

template<typename IterType >
CASM::SymGroup::SymGroup ( IterType  begin,
IterType  end,
PERIODICITY_TYPE  init_type = PERIODIC 
)

Definition at line 398 of file SymGroup.hh.

◆ within_cell()

SymOp CASM::within_cell ( const SymOp a,
const Lattice lat,
PERIODICITY_TYPE  periodicity 
)

Definition at line 2178 of file SymGroup.cc.