|
HermiteCounter::Index | CASM::xtal::HermiteCounter_impl::_spill_factor (Eigen::VectorXi &diag, HermiteCounter::Index position, HermiteCounter::value_type attempt) |
| Find the next factor of the specified position and share with next element. Use attempt as starting point. More...
|
|
HermiteCounter::Index | CASM::xtal::HermiteCounter_impl::next_spill_position (Eigen::VectorXi &diag, HermiteCounter::Index position) |
| Spill the next factor of the specified element with its neighbor, and return new position. More...
|
|
HermiteCounter::Index | CASM::xtal::HermiteCounter_impl::upper_size (HermiteCounter::Index init_dim) |
| Determine the number of elements in the upper triangular matrix (excluding diagonal) More...
|
|
EigenVectorXiCounter | CASM::xtal::HermiteCounter_impl::_upper_tri_counter (const Eigen::VectorXi ¤t_diag) |
| Create a counter for the elements above the diagonal based on the current diagonal value. More...
|
|
Eigen::MatrixXi | CASM::xtal::HermiteCounter_impl::_zip_matrix (const Eigen::VectorXi ¤t_diag, const Eigen::VectorXi ¤t_upper_tri) |
| Assemble a matrix diagonal and unrolled upper triangle values into a matrix. More...
|
|
Eigen::MatrixXi | CASM::xtal::HermiteCounter_impl::_expand_dims_old (const Eigen::MatrixXi &hermit_mat, const Eigen::VectorXi &active_dims) |
| Expand a n x n Hermite normal matrix into a m x m one (e.g. for 2D supercells) More...
|
|
Eigen::MatrixXi | CASM::xtal::HermiteCounter_impl::_expand_dims (const Eigen::MatrixXi &H, const Eigen::MatrixXi &G) |
| Expand a n x n Hermite normal matrix (H) into a m x m one through a m x m generating matrix (G) (e.g. for arbitrary 2D supercells) More...
|
|
Eigen::VectorXi | CASM::xtal::HermiteCounter_impl::_canonical_unroll (const Eigen::MatrixXi &hermit_mat) |
| Unroll a Hermit normal form square matrix into a vector such that it's canonical form is easy to compare. More...
|
|
bool | CASM::xtal::HermiteCounter_impl::_canonical_compare (const Eigen::MatrixXi &H0, const Eigen::MatrixXi &H1) |
| Compare two integer matrices and see which one is lexicographically greatest. Returns true if H0<H1. More...
|
|