casm.learn.TrainingData

class casm.learn.TrainingData(input, verbose=True)[source]

TrainingData is a data structure used to collect data from the training data file.

filename

The name of the training data file

Type:

str

filetype

The data format of the training data file

Type:

str, one of [“selection”, “csv”, “json”]

X_name

The name of the X columns in the training data file

Type:

str

X

The training input samples (correlations).

Type:

array-like of shape (n_samples, n_features)

y_name

The name of the y column in the training data file

Type:

str

y

The target values (property values).

Type:

array-like of shape: (n_samples, 1)

n_samples

The number of samples / target values (number of rows in X)

Type:

int

n_features

The number of features (number of columns in X)

Type:

int

sel

The selection specifying the training data

Type:

casm.Selection, (exists if filetype==”selection”)

data

Contains the X and y data

Type:

pandas.DataFrame

hull_dist_name

The name of the hull_dist column in the training data file

Type:

str, (exists if weight method==”wHullDist”)

hull_dist

The hull distance values.

Type:

array-like of shape: (n_samples, 1), (exists if weight method==”wHullDist”)

Parameters:
  • input (dict) – The input settings as a dict

  • verbose (boolean, optional, default=True) – Print information to stdout.

__init__(input, verbose=True)[source]
Parameters:
  • input (dict) – The input settings as a dict

  • verbose (boolean, optional, default=True) – Print information to stdout.

Methods

__init__(input[, verbose])

param input:

The input settings as a dict