casm.learn.TrainingData

class casm.learn.TrainingData(input, verbose=True)[source]

TrainingData is a data structure used to collect data from the training data file.

filename

The name of the training data file

Type

str

filetype

The data format of the training data file

Type

str, one of [“selection”, “csv”, “json”]

X_name

The name of the X columns in the training data file

Type

str

X

The training input samples (correlations).

Type

array-like of shape (n_samples, n_features)

y_name

The name of the y column in the training data file

Type

str

y

The target values (property values).

Type

array-like of shape: (n_samples, 1)

n_samples

The number of samples / target values (number of rows in X)

Type

int

n_features

The number of features (number of columns in X)

Type

int

sel

The selection specifying the training data

Type

casm.Selection, (exists if filetype==”selection”)

data

Contains the X and y data

Type

pandas.DataFrame

hull_dist_name

The name of the hull_dist column in the training data file

Type

str, (exists if weight method==”wHullDist”)

hull_dist

The hull distance values.

Type

array-like of shape: (n_samples, 1), (exists if weight method==”wHullDist”)

Parameters
  • input (dict) – The input settings as a dict

  • verbose (boolean, optional, default=True) – Print information to stdout.

__init__(input, verbose=True)[source]
Parameters
  • input (dict) – The input settings as a dict

  • verbose (boolean, optional, default=True) – Print information to stdout.

Methods

__init__(input[, verbose])

param input

The input settings as a dict